lunes, 1 de septiembre de 2014

ARITMETICA

NUMEROS REALES

Los números reales (ℜ) incluyen los números racionales (positivos, negativos y el cero) y los números irracionales; trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: \sqrt{5}, \pi, el número real log2, cuya trascendencia fue mentada por Euler en el siglo XVIII. En los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento no se consideraba necesario el formalismo de la actualidad, y se usaban expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas (aunque ciertamente técnicas) del concepto de número real. En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind

Número complejo

Ilustración del plano complejo. Los números reales se encuentran en el eje de coordenadas horizontal y los imaginarios en el eje vertical.
Los números complejos son una extensión de los números reales y forman el mínimo cuerpo algebraicamente cerrado que los contiene. El conjunto de los números complejos se designa como \scriptstyle \mathbb{C}, siendo \scriptstyle \mathbb{R} el conjunto de los reales se cumple que \scriptstyle \mathbb{R}\sub\mathbb{C}. Los números complejos incluyen todas las raíces de los polinomios, a diferencia de los reales. Todo número complejo puede representarse como la suma de un número real y un número imaginario (que es un múltiplo real de la unidad imaginaria, que se indica con la letra i), o en forma polar.
Los números complejos son la herramienta de trabajo del álgebra, análisis, así como de ramas de las matemáticas puras y aplicadas como variable compleja, ecuaciones diferenciales, aerodinámica y electromagnetismo entre otras de gran importancia. Además los números complejos se utilizan por doquier en matemáticas, en muchos campos de la física (notoriamente en la mecánica cuántica) y en ingeniería, especialmente en la electrónica y las telecomunicaciones, por su utilidad para representar las ondas electromagnéticas y la corriente eléctrica.
En matemáticas, estos números constituyen un cuerpo y, en general, se consideran como puntos del plano: el plano complejo. Este cuerpo contiene a los números reales y los imaginarios puros. Una propiedad importante que caracteriza a los números complejos es el teorema fundamental del álgebra — pero que se demuestra aún en un curso de variable compleja —, que afirma que cualquier ecuación algebraica de grado n tiene exactamente n soluciones complejas. Los análogos del cálculo diferencial e integral con números complejos reciben el nombre de variable compleja o análisis complejo.

No hay comentarios:

Publicar un comentario